Journals Library

An error occurred retrieving content to display, please try again.

Page not found (404)

Sorry - the page you requested could not be found.

Please choose a page from the navigation or try a website search above to find the information you need.

{{metadata.Title}}

{{metadata.Headline}}

{{author}}{{author}}{{($index < metadata.AuthorsAndEtalArray.length-1) ? ',' : '.'}}

Rafael Perera 1,*, Emily McFadden 1, Julie McLellan 1, Tom Lung 2, Philip Clarke 2, Teresa Pérez 1, Thomas Fanshawe 1, Andrew Dalton 1, Andrew Farmer 1, Paul Glasziou 3, Osamu Takahashi 4, John Stevens 5, Les Irwig 6, Jennifer Hirst 1, Sarah Stevens 1, Asuka Leslie 4, Sachiko Ohde 4, Gautam Deshpande 4, Kevin Urayama 4, Brian Shine 7, Richard Stevens 1

1 National Institute for Health Research School for Primary Care Research, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
2 Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
3 Bond University, Gold Coast, Australia
4 St Luke’s International University Center for Clinical Epidemiology, Tokyo, Japan
5 Patient and public involvement representative, , UK
6 Sydney School of Public Health, University of Sydney, Sydney, Australia
7 Oxford University Hospitals Trust, Oxford, UK
* Corresponding author Email: rafael.perera@phc.ox.ac.uk

{{metadata.Journal}} Volume: {{metadata.Volume}}, Issue: {{metadata.Issue}}, Published in {{metadata.PublicationDate | date:'MMMM yyyy'}}

https://doi.org/{{metadata.DOI}}

Citation: {{author}}{{ (($index < metadata.AuthorsArray.length-1) && ($index <=6)) ? ', ' : '' }}{{(metadata.AuthorsArray.length <= 6) ? '.' : '' }} {{(metadata.AuthorsArray.length > 6) ? 'et al.' : ''}} {{metadata.Title}}. {{metadata.JournalShortName}} {{metadata.PublicationDate | date:'yyyy'}};{{metadata.Volume}}({{metadata.Issue}})

Report Content

The full text of this issue is available as a PDF document from the Toolkit section on this page.

The full text of this issue is available as a PDF document from the Toolkit section on this page.

Abstract

BACKGROUND

Various lipid measurements in monitoring/screening programmes can be used, alone or in cardiovascular risk scores, to guide treatment for prevention of cardiovascular disease (CVD). Because some changes in lipids are due to variability rather than true change, the value of lipid-monitoring strategies needs evaluation.

OBJECTIVE

To determine clinical value and cost-effectiveness of different monitoring intervals and different lipid measures for primary and secondary prevention of CVD.

DATA SOURCES

We searched databases and clinical trials registers from 2007 (including the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, the Clinical Trials Register, the Current Controlled Trials register, and the Cumulative Index to Nursing and Allied Health Literature) to update and extend previous systematic reviews. Patient-level data from the Clinical Practice Research Datalink and St Luke's Hospital, Japan, were used in statistical modelling. Utilities and health-care costs were drawn from the literature.

METHODS

In two meta-analyses, we used prospective studies to examine associations of lipids with CVD and mortality, and randomised controlled trials to estimate lipid-lowering effects of atorvastatin doses. Patient-level data were used to estimate progression and variability of lipid measurements over time, and hence to model lipid-monitoring strategies. Results are expressed as rates of true-/false-positive and true-/false-negative tests for high lipid or high CVD risk. We estimated incremental costs per quality-adjusted life-year.

RESULTS

A total of 115 publications reported strength of association between different lipid measures and CVD events in 138 data sets. The summary adjusted hazard ratio per standard deviation of total cholesterol (TC) to high-density lipoprotein (HDL) cholesterol ratio was 1.25 (95% confidence interval 1.15 to 1.35) for CVD in a primary prevention population but heterogeneity was high (I (2)â =â 98%); similar results were observed for non-HDL cholesterol, apolipoprotein B and other ratio measures. Associations were smaller for other single lipid measures. Across 10 trials, low-dose atorvastatin (10 and 20â mg) effects ranged from a TC reduction of 0.92â mmol/l to 2.07â mmol/l, and low-density lipoprotein reduction of between 0.88â mmol/l and 1.86â mmol/l. Effects of 40â mg and 80â mg were reported by one trial each. For primary prevention, over a 3-year period, we estimate annual monitoring would unnecessarily treat 9 per 1000 more men (28 vs. 19 per 1000) and 5 per 1000 more women (17 vs. 12 per 1000) than monitoring every 3 years. However, annual monitoring would also undertreat 9 per 1000 fewer men (7 vs. 16 per 1000) and 4 per 1000 fewer women (7 vs. 11 per 1000) than monitoring at 3-year intervals. For secondary prevention, over a 3-year period, annual monitoring would increase unnecessary treatment changes by 66 per 1000 men and 31 per 1000 women, and decrease undertreatment by 29 per 1000 men and 28 per 1000 men, compared with monitoring every 3 years. In cost-effectiveness, strategies with increased screening/monitoring dominate. Exploratory analyses found that any unknown harms of statins would need utility decrements as large as 0.08 (men) to 0.11 (women) per statin user to reverse this finding in primary prevention.

LIMITATION

Heterogeneity in meta-analyses.

CONCLUSIONS

While acknowledging known and potential unknown harms of statins, we find that more frequent monitoring strategies are cost-effective compared with others. Regular lipid monitoring in those with and without CVD is likely to be beneficial to patients and to the health service. Future research should include trials of the benefits and harms of atorvastatin 40 and 80â mg, large-scale surveillance of statin safety, and investigation of the effect of monitoring on medication adherence.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42013003727.

FUNDING

The National Institute for Health Research Health Technology Assessment programme.

Abstract

BACKGROUND

Various lipid measurements in monitoring/screening programmes can be used, alone or in cardiovascular risk scores, to guide treatment for prevention of cardiovascular disease (CVD). Because some changes in lipids are due to variability rather than true change, the value of lipid-monitoring strategies needs evaluation.

OBJECTIVE

To determine clinical value and cost-effectiveness of different monitoring intervals and different lipid measures for primary and secondary prevention of CVD.

DATA SOURCES

We searched databases and clinical trials registers from 2007 (including the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, the Clinical Trials Register, the Current Controlled Trials register, and the Cumulative Index to Nursing and Allied Health Literature) to update and extend previous systematic reviews. Patient-level data from the Clinical Practice Research Datalink and St Luke's Hospital, Japan, were used in statistical modelling. Utilities and health-care costs were drawn from the literature.

METHODS

In two meta-analyses, we used prospective studies to examine associations of lipids with CVD and mortality, and randomised controlled trials to estimate lipid-lowering effects of atorvastatin doses. Patient-level data were used to estimate progression and variability of lipid measurements over time, and hence to model lipid-monitoring strategies. Results are expressed as rates of true-/false-positive and true-/false-negative tests for high lipid or high CVD risk. We estimated incremental costs per quality-adjusted life-year.

RESULTS

A total of 115 publications reported strength of association between different lipid measures and CVD events in 138 data sets. The summary adjusted hazard ratio per standard deviation of total cholesterol (TC) to high-density lipoprotein (HDL) cholesterol ratio was 1.25 (95% confidence interval 1.15 to 1.35) for CVD in a primary prevention population but heterogeneity was high (I (2)â =â 98%); similar results were observed for non-HDL cholesterol, apolipoprotein B and other ratio measures. Associations were smaller for other single lipid measures. Across 10 trials, low-dose atorvastatin (10 and 20â mg) effects ranged from a TC reduction of 0.92â mmol/l to 2.07â mmol/l, and low-density lipoprotein reduction of between 0.88â mmol/l and 1.86â mmol/l. Effects of 40â mg and 80â mg were reported by one trial each. For primary prevention, over a 3-year period, we estimate annual monitoring would unnecessarily treat 9 per 1000 more men (28 vs. 19 per 1000) and 5 per 1000 more women (17 vs. 12 per 1000) than monitoring every 3 years. However, annual monitoring would also undertreat 9 per 1000 fewer men (7 vs. 16 per 1000) and 4 per 1000 fewer women (7 vs. 11 per 1000) than monitoring at 3-year intervals. For secondary prevention, over a 3-year period, annual monitoring would increase unnecessary treatment changes by 66 per 1000 men and 31 per 1000 women, and decrease undertreatment by 29 per 1000 men and 28 per 1000 men, compared with monitoring every 3 years. In cost-effectiveness, strategies with increased screening/monitoring dominate. Exploratory analyses found that any unknown harms of statins would need utility decrements as large as 0.08 (men) to 0.11 (women) per statin user to reverse this finding in primary prevention.

LIMITATION

Heterogeneity in meta-analyses.

CONCLUSIONS

While acknowledging known and potential unknown harms of statins, we find that more frequent monitoring strategies are cost-effective compared with others. Regular lipid monitoring in those with and without CVD is likely to be beneficial to patients and to the health service. Future research should include trials of the benefits and harms of atorvastatin 40 and 80â mg, large-scale surveillance of statin safety, and investigation of the effect of monitoring on medication adherence.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42013003727.

FUNDING

The National Institute for Health Research Health Technology Assessment programme.

If you would like to receive a notification when this project publishes in the NIHR Journals Library, please submit your email address below.

 

Responses to this report

No responses have been published.

 

If you would like to submit a response to this publication, please do so using the form below:

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 2 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

By submitting your response, you are stating that you agree to the terms & conditions