Journals Library

An error occurred retrieving content to display, please try again.

Page not found (404)

Sorry - the page you requested could not be found.

Please choose a page from the navigation or try a website search above to find the information you need.

{{metadata.Title}}

{{metadata.Headline}}

Study found that hospital admission for 10-hour troponin testing to diagnose myocardial infarction was unlikely to be cost-effective compared with high-sensitivity troponin testing at presentation, unless rapid decision-making and discharge was possible. There was insufficient evidence to support the routine use of alternative biomarkers alongside troponin or routine investigation with exercise ECG or CTCA in troponin-negative patients.

{{author}}{{author}}{{($index < metadata.AuthorsAndEtalArray.length-1) ? ',' : '.'}}

S Goodacre,1,* P Thokala,1 C Carroll,1 JW Stevens,1 J Leaviss,1 M Al Khalaf,1 P Collinson,1 F Morris,1 P Evans,1 J Wang,1 

 School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
* Corresponding author ; Email: s.goodacre@sheffield.ac.uk

{{metadata.Journal}} Volume: {{metadata.Volume}}, Issue:{{metadata.Issue}}, Published in {{metadata.PublicationDate | date:'MMMM yyyy'}}

https://dx.doi.org/{{metadata.DOI}}

Citation: {{author}}{{ (($index < metadata.AuthorsArray.length-1) && ($index <=6)) ? ', ' : '' }}{{(metadata.AuthorsArray.length <= 6) ? '.' : '' }} {{(metadata.AuthorsArray.length > 6) ? 'et al.' : ''}} {{metadata.Title}}. {{metadata.JournalShortName}} {{metadata.PublicationDate | date:'yyyy'}};{{metadata.Volume}}({{metadata.Issue}})

You might also be interested in:
{{classification.Category.Concept}}

Report Content

The full text of this issue is available as a PDF document from the Toolkit section on this page.

The full text of this issue is available as a PDF document from the Toolkit section on this page.

Abstract

BACKGROUND

Current practice for suspected acute coronary syndrome (ACS) involves troponin testing 10-12 hours after symptom onset to diagnose myocardial infarction (MI). Patients with a negative troponin can be investigated further with computed tomographic coronary angiography (CTCA) or exercise electrocardiography (ECG).

OBJECTIVES

We aimed to estimate the diagnostic accuracy of early biomarkers for MI, the prognostic accuracy of biomarkers for major adverse cardiac adverse events (MACEs) in troponin-negative patients, the diagnostic accuracy of CTCA and exercise ECG for coronary artery disease (CAD) and the prognostic accuracy of CTCA and exercise ECG for MACEs in patients with suspected ACS. We then aimed to estimate the cost-effectiveness of using alternative biomarker strategies to diagnose MI, and using biomarkers, CTCA and exercise ECG to risk-stratify troponin-negative patients.

DATA SOURCES

We searched MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations; Cumulative Index of Nursing and Allied Health Literature (CINAHL), EMBASE, Web of Science, Cochrane Central Database of Controlled Trials (CENTRAL), Cochrane Database of Systematic Reviews (CDSR), NHS Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment database from 1985 (CTCA review) or 1995 (biomarkers review) to November 2010, reviewed citation lists and contacted experts to identify relevant studies.

REVIEW METHODS

Diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool and prognostic studies using a framework adapted for the project. Meta-analysis was conducted using bayesian Markov chain Monte Carlo simulation. We developed a decision-analysis model to evaluate the cost-effectiveness of alternative biomarker strategies to diagnose MI, and the cost-effectiveness of biomarkers, CTCA or exercise ECG to risk-stratify patients with a negative troponin. Strategies were applied to a theoretical cohort of patients with suspected ACS. Cost-effectiveness was estimated as the incremental cost per quality-adjusted life-year (QALY) of each strategy compared with the next most effective, taking a health-service perspective and a lifetime horizon.

RESULTS

Sensitivity and specificity (95% predictive interval) were 77% (29-96%) and 93% (46-100%) for troponin I, 80% (33-97%) and 91% (53-99%) for troponin T (99th percentile threshold), 81% (50-95%) and 80% (26-98%) for quantitative heart-type fatty acid-binding protein (H-FABP), 68% (11-97%) and 92% (20-100%) for qualitative H-FABP, 77% (19-98%) and 39% (2-95%) for ischaemia-modified albumin and 62% (35-83%) and 83% (35-98%) for myoglobin. CTCA had 94% (61-99%) sensitivity and 87% (16-100%) specificity for CAD. Positive CTCA and positive-exercise ECG had relative risks of 5.8 (0.6-24.5) and 8.0 (2.3-22.7) for MACEs. In most scenarios in the economic analysis presentation, high-sensitivity troponin measurement was the most effective strategy with an incremental cost-effectiveness ratio (ICER) of less than the £20,000-30,000/QALY threshold (ICER £7487-17,191/QALY). CTCA appeared to be the most cost-effective strategy for patients with a negative troponin, with an ICER of £11,041/QALY. However, when a lower MACE rate was assumed, CTCA had a high ICER (£262,061/QALY) and the no-testing strategy was optimal.

LIMITATIONS

There was substantial variation between the primary studies and heterogeneity in their results. Findings of the economic model were dependent on assumptions regarding the value of detecting and treating positive cases.

CONCLUSIONS

Although presentation troponin has suboptimal sensitivity, measurement of a 10-hour troponin level is unlikely to be cost-effective in most scenarios compared with a high-sensitivity presentation troponin. CTCA may be a cost-effective strategy for troponin-negative patients, but further research is required to estimate the effect of CTCA on event rates and health-care costs.

FUNDING

The National Institute for Health Research Health Technology Assessment programme.

Abstract

BACKGROUND

Current practice for suspected acute coronary syndrome (ACS) involves troponin testing 10-12 hours after symptom onset to diagnose myocardial infarction (MI). Patients with a negative troponin can be investigated further with computed tomographic coronary angiography (CTCA) or exercise electrocardiography (ECG).

OBJECTIVES

We aimed to estimate the diagnostic accuracy of early biomarkers for MI, the prognostic accuracy of biomarkers for major adverse cardiac adverse events (MACEs) in troponin-negative patients, the diagnostic accuracy of CTCA and exercise ECG for coronary artery disease (CAD) and the prognostic accuracy of CTCA and exercise ECG for MACEs in patients with suspected ACS. We then aimed to estimate the cost-effectiveness of using alternative biomarker strategies to diagnose MI, and using biomarkers, CTCA and exercise ECG to risk-stratify troponin-negative patients.

DATA SOURCES

We searched MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations; Cumulative Index of Nursing and Allied Health Literature (CINAHL), EMBASE, Web of Science, Cochrane Central Database of Controlled Trials (CENTRAL), Cochrane Database of Systematic Reviews (CDSR), NHS Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessment database from 1985 (CTCA review) or 1995 (biomarkers review) to November 2010, reviewed citation lists and contacted experts to identify relevant studies.

REVIEW METHODS

Diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool and prognostic studies using a framework adapted for the project. Meta-analysis was conducted using bayesian Markov chain Monte Carlo simulation. We developed a decision-analysis model to evaluate the cost-effectiveness of alternative biomarker strategies to diagnose MI, and the cost-effectiveness of biomarkers, CTCA or exercise ECG to risk-stratify patients with a negative troponin. Strategies were applied to a theoretical cohort of patients with suspected ACS. Cost-effectiveness was estimated as the incremental cost per quality-adjusted life-year (QALY) of each strategy compared with the next most effective, taking a health-service perspective and a lifetime horizon.

RESULTS

Sensitivity and specificity (95% predictive interval) were 77% (29-96%) and 93% (46-100%) for troponin I, 80% (33-97%) and 91% (53-99%) for troponin T (99th percentile threshold), 81% (50-95%) and 80% (26-98%) for quantitative heart-type fatty acid-binding protein (H-FABP), 68% (11-97%) and 92% (20-100%) for qualitative H-FABP, 77% (19-98%) and 39% (2-95%) for ischaemia-modified albumin and 62% (35-83%) and 83% (35-98%) for myoglobin. CTCA had 94% (61-99%) sensitivity and 87% (16-100%) specificity for CAD. Positive CTCA and positive-exercise ECG had relative risks of 5.8 (0.6-24.5) and 8.0 (2.3-22.7) for MACEs. In most scenarios in the economic analysis presentation, high-sensitivity troponin measurement was the most effective strategy with an incremental cost-effectiveness ratio (ICER) of less than the £20,000-30,000/QALY threshold (ICER £7487-17,191/QALY). CTCA appeared to be the most cost-effective strategy for patients with a negative troponin, with an ICER of £11,041/QALY. However, when a lower MACE rate was assumed, CTCA had a high ICER (£262,061/QALY) and the no-testing strategy was optimal.

LIMITATIONS

There was substantial variation between the primary studies and heterogeneity in their results. Findings of the economic model were dependent on assumptions regarding the value of detecting and treating positive cases.

CONCLUSIONS

Although presentation troponin has suboptimal sensitivity, measurement of a 10-hour troponin level is unlikely to be cost-effective in most scenarios compared with a high-sensitivity presentation troponin. CTCA may be a cost-effective strategy for troponin-negative patients, but further research is required to estimate the effect of CTCA on event rates and health-care costs.

FUNDING

The National Institute for Health Research Health Technology Assessment programme.

If you would like to receive a notification when this project publishes in the NIHR Journals Library, please submit your email address below.

An error has occurred in processing the XML document

 

Responses to this report

 

No responses have been published.

If you would like to submit a response to this publication, please do so using the form below.

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 2 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

By submitting your response, you are stating that you agree to the terms & conditions