Journals Library

An error has occurred in processing the XML document

An error occurred retrieving content to display, please try again.

Page not found (404)

Sorry - the page you requested could not be found.

Please choose a page from the navigation or try a website search above to find the information you need.

{{metadata.Title}}

{{metadata.Headline}}

Study of prediction rules for serious childhood infection found that there are several clinical features which are helpful in diagnosing whether a child has a serious infection but that none on its own is sufficient. Clinical 'gut feeling' and diagnostic safety netting are used to fill this 'diagnostic gap'.

{{author}}{{author}}{{($index < metadata.AuthorsAndEtalArray.length-1) ? ',' : '.'}}

An error has occurred in processing the XML document

An error has occurred in processing the XML document

{{metadata.Journal}} Volume: {{metadata.Volume}}, Issue:{{metadata.Issue}}, Published in {{metadata.PublicationDate | date:'MMMM yyyy'}}

https://dx.doi.org/{{metadata.DOI}}

Citation: {{author}}{{ (($index < metadata.AuthorsArray.length-1) && ($index <=6)) ? ', ' : '' }}{{(metadata.AuthorsArray.length <= 6) ? '.' : '' }} {{(metadata.AuthorsArray.length > 6) ? 'et al.' : ''}} {{metadata.Title}}. {{metadata.JournalShortName}} {{metadata.PublicationDate | date:'yyyy'}};{{metadata.Volume}}({{metadata.Issue}})

You might also be interested in:
{{classification.Category.Concept}}

Report Content

The full text of this issue is available as a PDF document from the Toolkit section on this page.

The full text of this issue is available as a PDF document from the Toolkit section on this page.

Abstract

BACKGROUND

Although the vast majority of children with acute infections are managed at home, this is one of the most common problems encountered in children attending emergency departments (EDs) and primary care. Distinguishing children with serious infection from those with minor or self-limiting infection is difficult. This can result in misdiagnosis of children with serious infections, which results in a poorer health outcome, or a tendency to refer or admit children as a precaution; thus, inappropriately utilising secondary-care resources.

OBJECTIVES

We systematically identified clinical features and laboratory tests which identify serious infection in children attending the ED and primary care. We also identified clinical prediction rules and validated those using existing data sets.

DATA SOURCES

We searched MEDLINE, Medion, EMBASE, Cumulative Index to Nursing and Allied Health Literature and Database of Abstracts of Reviews of Effects in October 2008, with an update in June 2009, using search terms that included terms related to five components: serious infections, children, clinical history and examination, laboratory tests and ambulatory care settings. We also searched references of included studies, clinical content experts, and relevant National Institute for Health and Clinical Excellence guidelines to identify relevant studies. There were no language restrictions. Studies were eligible for inclusion if they were based in ambulatory settings in economically developed countries.

REVIEW METHODS

Literature searching, selection and data extraction were carried out by two reviewers. We assessed quality using the quality assessment of diagnostic accuracy studies (QUADAS) instrument, and used spectrum bias and validity of the reference standard as exclusion criteria. We calculated the positive likelihood ratio (LR+) and negative likelihood ratio (LR-) of each feature along with the pre- and post-test probabilities of the outcome. Meta-analysis was performed using the bivariate method when appropriate. We externally validated clinical prediction rules identified from the systematic review using existing data from children attending ED or primary care.

RESULTS

We identified 1939 articles, of which 35 were selected for inclusion in the review. There was only a single study from primary care; all others were performed in the ED. The quality of the included studies was modest. We also identified seven data sets (11,045 children) to use for external validation. The most useful clinical features for ruling in serious infection was parental or clinician overall concern that the illness was different from previous illnesses or that something was wrong. In low- or intermediate-prevalence settings, the presence of fever had some diagnostic value. Additional red flag features included cyanosis, poor peripheral circulation, rapid breathing, crackles on auscultation, diminished breath sounds, meningeal irritation, petechial rash, decreased consciousness and seizures. Procalcitonin (LR+ 1.75-2.96, LR- 0.08-0.35) and C-reactive protein (LR+ 2.53-3.79, LR- 0.25-0.61) were superior to white cell counts. The best performing clinical prediction rule was a five-stage decision tree rule, consisting of the physician's gut feeling, dyspnoea, temperature ⠥ 40 °C, diarrhoea and age. It was able to decrease the likelihood of serious infections substantially, but on validation it provided good ruling out value only in low-to-intermediate-prevalence settings (LR- 0.11-0.28). We also identified and validated the Yale Observation Scale and prediction rules for pneumonia, meningitis and gastroenteritis.

LIMITATIONS

Only a single study was identified from primary-care settings, therefore results may lack generalisability.

CONCLUSIONS

Several clinical features are useful to increase or decrease the probability that a child has a serious infection. None is sufficient on its own to substantially raise or lower the risk of serious infection. Some are highly specific ('red flags'), so when present should prompt a more thorough or repeated assessment. C-reactive protein and procalcitonin demonstrate similar diagnostic characteristics and are both superior to white cell counts. However, even in children with a serious infection, red flags will occur infrequently, and their absence does not lower the risk. The diagnostic gap is currently filled by using clinical 'gut feeling' and diagnostic safety-netting, which are still not well defined. Although two prediction rules for serious infection and one for meningitis provided some diagnostic value, we do not recommend widespread implementation at this time. Future research is needed to identify predictors of serious infection in children in primary-care settings, to validate prediction rules more widely, and determine the added value of blood tests in primary-care settings.

FUNDING

The National Institute for Health Research Health Technology Assessment programme.

Abstract

BACKGROUND

Although the vast majority of children with acute infections are managed at home, this is one of the most common problems encountered in children attending emergency departments (EDs) and primary care. Distinguishing children with serious infection from those with minor or self-limiting infection is difficult. This can result in misdiagnosis of children with serious infections, which results in a poorer health outcome, or a tendency to refer or admit children as a precaution; thus, inappropriately utilising secondary-care resources.

OBJECTIVES

We systematically identified clinical features and laboratory tests which identify serious infection in children attending the ED and primary care. We also identified clinical prediction rules and validated those using existing data sets.

DATA SOURCES

We searched MEDLINE, Medion, EMBASE, Cumulative Index to Nursing and Allied Health Literature and Database of Abstracts of Reviews of Effects in October 2008, with an update in June 2009, using search terms that included terms related to five components: serious infections, children, clinical history and examination, laboratory tests and ambulatory care settings. We also searched references of included studies, clinical content experts, and relevant National Institute for Health and Clinical Excellence guidelines to identify relevant studies. There were no language restrictions. Studies were eligible for inclusion if they were based in ambulatory settings in economically developed countries.

REVIEW METHODS

Literature searching, selection and data extraction were carried out by two reviewers. We assessed quality using the quality assessment of diagnostic accuracy studies (QUADAS) instrument, and used spectrum bias and validity of the reference standard as exclusion criteria. We calculated the positive likelihood ratio (LR+) and negative likelihood ratio (LR-) of each feature along with the pre- and post-test probabilities of the outcome. Meta-analysis was performed using the bivariate method when appropriate. We externally validated clinical prediction rules identified from the systematic review using existing data from children attending ED or primary care.

RESULTS

We identified 1939 articles, of which 35 were selected for inclusion in the review. There was only a single study from primary care; all others were performed in the ED. The quality of the included studies was modest. We also identified seven data sets (11,045 children) to use for external validation. The most useful clinical features for ruling in serious infection was parental or clinician overall concern that the illness was different from previous illnesses or that something was wrong. In low- or intermediate-prevalence settings, the presence of fever had some diagnostic value. Additional red flag features included cyanosis, poor peripheral circulation, rapid breathing, crackles on auscultation, diminished breath sounds, meningeal irritation, petechial rash, decreased consciousness and seizures. Procalcitonin (LR+ 1.75-2.96, LR- 0.08-0.35) and C-reactive protein (LR+ 2.53-3.79, LR- 0.25-0.61) were superior to white cell counts. The best performing clinical prediction rule was a five-stage decision tree rule, consisting of the physician's gut feeling, dyspnoea, temperature ⠥ 40 °C, diarrhoea and age. It was able to decrease the likelihood of serious infections substantially, but on validation it provided good ruling out value only in low-to-intermediate-prevalence settings (LR- 0.11-0.28). We also identified and validated the Yale Observation Scale and prediction rules for pneumonia, meningitis and gastroenteritis.

LIMITATIONS

Only a single study was identified from primary-care settings, therefore results may lack generalisability.

CONCLUSIONS

Several clinical features are useful to increase or decrease the probability that a child has a serious infection. None is sufficient on its own to substantially raise or lower the risk of serious infection. Some are highly specific ('red flags'), so when present should prompt a more thorough or repeated assessment. C-reactive protein and procalcitonin demonstrate similar diagnostic characteristics and are both superior to white cell counts. However, even in children with a serious infection, red flags will occur infrequently, and their absence does not lower the risk. The diagnostic gap is currently filled by using clinical 'gut feeling' and diagnostic safety-netting, which are still not well defined. Although two prediction rules for serious infection and one for meningitis provided some diagnostic value, we do not recommend widespread implementation at this time. Future research is needed to identify predictors of serious infection in children in primary-care settings, to validate prediction rules more widely, and determine the added value of blood tests in primary-care settings.

FUNDING

The National Institute for Health Research Health Technology Assessment programme.

If you would like to receive a notification when this project publishes in the NIHR Journals Library, please submit your email address below.

 

Responses to this report

 

No responses have been published.

If you would like to submit a response to this publication, please do so using the form below.

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 2 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

By submitting your response, you are stating that you agree to the terms & conditions