Journals Library

An error occurred retrieving content to display, please try again.

Page not found (404)

Sorry - the page you requested could not be found.

Please choose a page from the navigation or try a website search above to find the information you need.

{{metadata.Title}}

{{metadata.Headline}}

{{author}}{{author}}{{($index < metadata.AuthorsAndEtalArray.length-1) ? ',' : '.'}}

AK Simonds 1,*, A Hanak 1, M Chatwin 1, MJ Morrell 1, A Hall 2, KH Parker 3, JH Siggers 3, RJ Dickinson 3

1 Clinical and Academic Unit of Sleep & Breathing, Royal Brompton & Harefield NHS Foundation Trust, London, UK
2 Department of Microbiology, Royal Brompton & Harefield NHS Foundation Trust, London, UK
3 Department of Bioengineering, Imperial College, London, UK
* Corresponding author Email: A.Simonds@rbht.nhs.uk

{{metadata.Journal}} Volume: {{metadata.Volume}}, Issue: {{metadata.Issue}}, Published in {{metadata.PublicationDate | date:'MMMM yyyy'}}

https://doi.org/{{metadata.DOI}}

Citation: {{author}}{{ (($index < metadata.AuthorsArray.length-1) && ($index <=6)) ? ', ' : '' }}{{(metadata.AuthorsArray.length <= 6) ? '.' : '' }} {{(metadata.AuthorsArray.length > 6) ? 'et al.' : ''}} {{metadata.Title}}. {{metadata.JournalShortName}} {{metadata.PublicationDate | date:'yyyy'}};{{metadata.Volume}}({{metadata.Issue}})

Report Content

The full text of this issue is available as a PDF document from the Toolkit section on this page.

The full text of this issue is available as a PDF document from the Toolkit section on this page.

Abstract

BACKGROUND

Influenza viruses are thought to be spread by droplets, but the role of aerosol dissemination is unclear and has not been assessed by previous studies. Oxygen therapy, nebulised medication and ventilatory support are treatments used in clinical practice to treat influenzal infection are thought to generate droplets or aerosols.

OBJECTIVES

Evaluation of the characteristics of droplet/aerosol dispersion around delivery systems during non-invasive ventilation (NIV), oxygen therapy, nebuliser treatment and chest physiotherapy by measuring droplet size, geographical distribution of droplets, decay in droplets over time after the interventions were discontinued.

METHODS

Three groups were studied: (1) normal controls, (2) subjects with coryzal symptoms and (3) adult patients with chronic lung disease who were admitted to hospital with an infective exacerbation. Each group received oxygen therapy, NIV using a vented mask system and a modified circuit with non-vented mask and exhalation filter, and nebulised saline. The patient group had a period of standardised chest physiotherapy treatment. Droplet counts in mean diameter size ranges from 0.3 to > 10 µm were measured with an counter placed adjacent to the face and at a 1-m distance from the subject/patient, at the height of the nose/mouth of an average health-care worker.

RESULTS

NIV using a vented mask produced droplets in the large size range (> 10 µm) in patients (p = 0.042) and coryzal subjects (p = 0.044) compared with baseline values, but not in normal controls (p = 0.379), but this increase in large droplets was not seen using the NIV circuit modification. Chest physiotherapy produced droplets predominantly of > 10 µm (p = 0.003), which, as with NIV droplet count in the patients, had fallen significantly by 1 m. Oxygen therapy did not increase droplet count in any size range. Nebulised saline delivered droplets in the small- and medium-size aerosol/droplet range, but did not increase large-size droplet count.

CONCLUSIONS

NIV and chest physiotherapy are droplet (not aerosol)-generating procedures, producing droplets of > 10 µm in size. Due to their large mass, most fall out on to local surfaces within 1 m. The only device producing an aerosol was the nebuliser and the output profile is consistent with nebuliser characteristics rather than dissemination of large droplets from patients. These findings suggest that health-care workers providing NIV and chest physiotherapy, working within 1 m of an infected patient should have a higher level of respiratory protection, but that infection control measures designed to limit aerosol spread may have less relevance for these procedures. These results may have infection control implications for other airborne infections, such as severe acute respiratory syndrome and tuberculosis, as well as for pandemic influenza infection.

Abstract

BACKGROUND

Influenza viruses are thought to be spread by droplets, but the role of aerosol dissemination is unclear and has not been assessed by previous studies. Oxygen therapy, nebulised medication and ventilatory support are treatments used in clinical practice to treat influenzal infection are thought to generate droplets or aerosols.

OBJECTIVES

Evaluation of the characteristics of droplet/aerosol dispersion around delivery systems during non-invasive ventilation (NIV), oxygen therapy, nebuliser treatment and chest physiotherapy by measuring droplet size, geographical distribution of droplets, decay in droplets over time after the interventions were discontinued.

METHODS

Three groups were studied: (1) normal controls, (2) subjects with coryzal symptoms and (3) adult patients with chronic lung disease who were admitted to hospital with an infective exacerbation. Each group received oxygen therapy, NIV using a vented mask system and a modified circuit with non-vented mask and exhalation filter, and nebulised saline. The patient group had a period of standardised chest physiotherapy treatment. Droplet counts in mean diameter size ranges from 0.3 to > 10 µm were measured with an counter placed adjacent to the face and at a 1-m distance from the subject/patient, at the height of the nose/mouth of an average health-care worker.

RESULTS

NIV using a vented mask produced droplets in the large size range (> 10 µm) in patients (p = 0.042) and coryzal subjects (p = 0.044) compared with baseline values, but not in normal controls (p = 0.379), but this increase in large droplets was not seen using the NIV circuit modification. Chest physiotherapy produced droplets predominantly of > 10 µm (p = 0.003), which, as with NIV droplet count in the patients, had fallen significantly by 1 m. Oxygen therapy did not increase droplet count in any size range. Nebulised saline delivered droplets in the small- and medium-size aerosol/droplet range, but did not increase large-size droplet count.

CONCLUSIONS

NIV and chest physiotherapy are droplet (not aerosol)-generating procedures, producing droplets of > 10 µm in size. Due to their large mass, most fall out on to local surfaces within 1 m. The only device producing an aerosol was the nebuliser and the output profile is consistent with nebuliser characteristics rather than dissemination of large droplets from patients. These findings suggest that health-care workers providing NIV and chest physiotherapy, working within 1 m of an infected patient should have a higher level of respiratory protection, but that infection control measures designed to limit aerosol spread may have less relevance for these procedures. These results may have infection control implications for other airborne infections, such as severe acute respiratory syndrome and tuberculosis, as well as for pandemic influenza infection.

If you would like to receive a notification when this project publishes in the NIHR Journals Library, please submit your email address below.

 

Responses to this report

No responses have been published.

 

If you would like to submit a response to this publication, please do so using the form below:

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 2 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

By submitting your response, you are stating that you agree to the terms & conditions