Journals Library

An error occurred retrieving content to display, please try again.

Page not found (404)

Sorry - the page you requested could not be found.

Please choose a page from the navigation or try a website search above to find the information you need.

{{author}}{{author}}{{($index < metadata.AuthorsAndEtalArray.length-1) ? ',' : '.'}}

Jo Picot, Vicky Copley, Jill L Colquitt, Neelam Kalita, Debbie Hartwell & Jackie Bryant.

Jo Picot ,*, Vicky Copley , Jill L Colquitt , Neelam Kalita , Debbie Hartwell , Jackie Bryant

Southampton Health Technology Assessments Centre (SHTAC), University of Southampton, Southampton, UK
* Corresponding author Email: j.picot@soton.ac.uk

Funding: {{metadata.Funding}}

{{metadata.Journal}} Volume: {{metadata.Volume}}, Issue: {{metadata.Issue}}, Published in {{metadata.PublicationDate | date:'MMMM yyyy'}}

https://doi.org/{{metadata.DOI}}

Citation: {{author}}{{ (($index < metadata.AuthorsArray.length-1) && ($index <=6)) ? ', ' : '' }}{{(metadata.AuthorsArray.length <= 6) ? '.' : '' }} {{(metadata.AuthorsArray.length > 6) ? 'et al.' : ''}} . {{metadata.JournalShortName}} {{metadata.PublicationDate | date:'yyyy'}};{{metadata.Volume}}({{metadata.Issue}})

Crossmark status check

Report Content

The full text of this issue is available as a PDF document from the Toolkit section on this page.

The full text of this issue is available as a PDF document from the Toolkit section on this page.

Abstract

BACKGROUND

Initial treatment for early breast cancer is usually either breast-conserving surgery (BCS) or mastectomy. After BCS, whole-breast external beam radiotherapy (WB-EBRT) is the standard of care. A potential alternative to post-operative WB-EBRT is intraoperative radiation therapy delivered by the INTRABEAM(®) Photon Radiotherapy System (Carl Zeiss, Oberkochen, Germany) to the tissue adjacent to the resection cavity at the time of surgery.

OBJECTIVE

To assess the clinical effectiveness and cost-effectiveness of INTRABEAM for the adjuvant treatment of early breast cancer during surgical removal of the tumour.

DATA SOURCES

Electronic bibliographic databases, including MEDLINE, EMBASE and The Cochrane Library, were searched from inception to March 2014 for English-language articles. Bibliographies of articles, systematic reviews, clinical guidelines and the manufacturer's submission were also searched. The advisory group was contacted to identify additional evidence.

METHODS

Systematic reviews of clinical effectiveness, health-related quality of life and cost-effectiveness were conducted. Two reviewers independently screened titles and abstracts for eligibility. Inclusion criteria were applied to full texts of retrieved papers by one reviewer and checked by a second reviewer. Data extraction and quality assessment were undertaken by one reviewer and checked by a second reviewer, and differences in opinion were resolved through discussion at each stage. Clinical effectiveness studies were included if they were carried out in patients with early operable breast cancer. The intervention was the INTRABEAM system, which was compared with WB-EBRT, and study designs were randomised controlled trials (RCTs). Controlled clinical trials could be considered if data from available RCTs were incomplete (e.g. absence of data on outcomes of interest). A cost-utility decision-analytic model was developed to estimate the costs, benefits and cost-effectiveness of INTRABEAM compared with WB-EBRT for early operable breast cancer.

RESULTS

One non-inferiority RCT, TARGeted Intraoperative radioTherapy Alone (TARGIT-A), met the inclusion criteria for the review. The review found that local recurrence was slightly higher following INTRABEAM than WB-EBRT, but the difference did not exceed the 2.5% non-inferiority margin providing INTRABEAM was given at the same time as BCS. Overall survival was similar with both treatments. Statistically significant differences in complications were found for the occurrence of wound seroma requiring more than three aspirations (more frequent in the INTRABEAM group) and for a Radiation Therapy Oncology Group toxicity score of grade 3 or 4 (less frequent in the INTRABEAM group). Cost-effectiveness base-case analysis indicates that INTRABEAM is less expensive but also less effective than WB-EBRT because it is associated with lower total costs but fewer total quality-adjusted life-years gained. However, sensitivity analyses identified four model parameters that can cause a switch in the treatment option that is considered cost-effective.

LIMITATIONS

The base-case result from the model is subject to uncertainty because the disease progression parameters are largely drawn from the single available RCT. The RCT median follow-up of 2 years 5 months may be inadequate, particularly as the number of participants with local recurrence is low. The model is particularly sensitive to this parameter.

CONCLUSIONS AND IMPLICATIONS

A significant investment in INTRABEAM equipment and staff training (clinical and non-clinical) would be required to make this technology available across the NHS. Longer-term follow-up data from the TARGIT-A trial and analysis of registry data are required as results are currently based on a small number of events and economic modelling results are uncertain.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42013006720.

FUNDING

The National Institute for Health Research Health Technology Assessment programme. Note that the economic model associated with this document is protected by intellectual property rights, which are owned by the University of Southampton. Anyone wishing to modify, adapt, translate, reverse engineer, decompile, dismantle or create derivative work based on the economic model must first seek the agreement of the property owners.

Abstract

BACKGROUND

Initial treatment for early breast cancer is usually either breast-conserving surgery (BCS) or mastectomy. After BCS, whole-breast external beam radiotherapy (WB-EBRT) is the standard of care. A potential alternative to post-operative WB-EBRT is intraoperative radiation therapy delivered by the INTRABEAM(®) Photon Radiotherapy System (Carl Zeiss, Oberkochen, Germany) to the tissue adjacent to the resection cavity at the time of surgery.

OBJECTIVE

To assess the clinical effectiveness and cost-effectiveness of INTRABEAM for the adjuvant treatment of early breast cancer during surgical removal of the tumour.

DATA SOURCES

Electronic bibliographic databases, including MEDLINE, EMBASE and The Cochrane Library, were searched from inception to March 2014 for English-language articles. Bibliographies of articles, systematic reviews, clinical guidelines and the manufacturer's submission were also searched. The advisory group was contacted to identify additional evidence.

METHODS

Systematic reviews of clinical effectiveness, health-related quality of life and cost-effectiveness were conducted. Two reviewers independently screened titles and abstracts for eligibility. Inclusion criteria were applied to full texts of retrieved papers by one reviewer and checked by a second reviewer. Data extraction and quality assessment were undertaken by one reviewer and checked by a second reviewer, and differences in opinion were resolved through discussion at each stage. Clinical effectiveness studies were included if they were carried out in patients with early operable breast cancer. The intervention was the INTRABEAM system, which was compared with WB-EBRT, and study designs were randomised controlled trials (RCTs). Controlled clinical trials could be considered if data from available RCTs were incomplete (e.g. absence of data on outcomes of interest). A cost-utility decision-analytic model was developed to estimate the costs, benefits and cost-effectiveness of INTRABEAM compared with WB-EBRT for early operable breast cancer.

RESULTS

One non-inferiority RCT, TARGeted Intraoperative radioTherapy Alone (TARGIT-A), met the inclusion criteria for the review. The review found that local recurrence was slightly higher following INTRABEAM than WB-EBRT, but the difference did not exceed the 2.5% non-inferiority margin providing INTRABEAM was given at the same time as BCS. Overall survival was similar with both treatments. Statistically significant differences in complications were found for the occurrence of wound seroma requiring more than three aspirations (more frequent in the INTRABEAM group) and for a Radiation Therapy Oncology Group toxicity score of grade 3 or 4 (less frequent in the INTRABEAM group). Cost-effectiveness base-case analysis indicates that INTRABEAM is less expensive but also less effective than WB-EBRT because it is associated with lower total costs but fewer total quality-adjusted life-years gained. However, sensitivity analyses identified four model parameters that can cause a switch in the treatment option that is considered cost-effective.

LIMITATIONS

The base-case result from the model is subject to uncertainty because the disease progression parameters are largely drawn from the single available RCT. The RCT median follow-up of 2 years 5 months may be inadequate, particularly as the number of participants with local recurrence is low. The model is particularly sensitive to this parameter.

CONCLUSIONS AND IMPLICATIONS

A significant investment in INTRABEAM equipment and staff training (clinical and non-clinical) would be required to make this technology available across the NHS. Longer-term follow-up data from the TARGIT-A trial and analysis of registry data are required as results are currently based on a small number of events and economic modelling results are uncertain.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42013006720.

FUNDING

The National Institute for Health Research Health Technology Assessment programme. Note that the economic model associated with this document is protected by intellectual property rights, which are owned by the University of Southampton. Anyone wishing to modify, adapt, translate, reverse engineer, decompile, dismantle or create derivative work based on the economic model must first seek the agreement of the property owners.

If you would like to receive a notification when this project publishes in the NIHR Journals Library, please submit your email address below.

 

Responses to this report

No responses have been published.

 

If you would like to submit a response to this publication, please do so using the form below:

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 14 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.  Non-relevant comments will be deleted.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

By submitting your response, you are stating that you agree to the terms & conditions