Journals Library

An error occurred retrieving content to display, please try again.

Page not found (404)

Sorry - the page you requested could not be found.

Please choose a page from the navigation or try a website search above to find the information you need.

{{metadata.Title}}

{{metadata.Headline}}

{{author}}{{author}}{{($index < metadata.AuthorsAndEtalArray.length-1) ? ',' : '.'}}

Steven J Edwards 1,*, Samantha Barton 2, Elizabeth Thurgar 3, Nicola Trevor 4

1 Head of BMJ Technology Assessment Group (BMJ-TAG), London, UK
2 Senior Health Technology Assessment Analyst, BMJ-TAG, London, UK
3 Senior Health Economist, BMJ-TAG, London, UK
4 Health Economics Lead, BMJ-TAG, London, UK
* Corresponding author Email:

{{metadata.Journal}} Volume: {{metadata.Volume}}, Issue: {{metadata.Issue}}, Published in {{metadata.PublicationDate | date:'MMMM yyyy'}}

https://doi.org/{{metadata.DOI}}

Citation: {{author}}{{ (($index < metadata.AuthorsArray.length-1) && ($index <=6)) ? ', ' : '' }}{{(metadata.AuthorsArray.length <= 6) ? '.' : '' }} {{(metadata.AuthorsArray.length > 6) ? 'et al.' : ''}} {{metadata.Title}}. {{metadata.JournalShortName}} {{metadata.PublicationDate | date:'yyyy'}};{{metadata.Volume}}({{metadata.Issue}})

Report Content

The full text of this issue is available as a PDF document from the Toolkit section on this page.

The full text of this issue is available as a PDF document from the Toolkit section on this page.

Abstract

BACKGROUND

Ovarian cancer is the fifth most common cancer in the UK, and the fourth most common cause of cancer death. Of those people successfully treated with first-line chemotherapy, 55-75% will relapse within 2 years. At this time, it is uncertain which chemotherapy regimen is more clinically effective and cost-effective for the treatment of recurrent, advanced ovarian cancer.

OBJECTIVES

To determine the comparative clinical effectiveness and cost-effectiveness of topotecan (Hycamtin(®), GlaxoSmithKline), pegylated liposomal doxorubicin hydrochloride (PLDH; Caelyx(®), Schering-Plough), paclitaxel (Taxol(®), Bristol-Myers Squibb), trabectedin (Yondelis(®), PharmaMar) and gemcitabine (Gemzar(®), Eli Lilly and Company) for the treatment of advanced, recurrent ovarian cancer.

DATA SOURCES

Electronic databases (MEDLINE(®), EMBASE, Cochrane Central Register of Controlled Trials, Health Technology Assessment database, NHS Economic Evaluations Database) and trial registries were searched, and company submissions were reviewed. Databases were searched from inception to May 2013.

METHODS

A systematic review of the clinical and economic literature was carried out following standard methodological principles. Double-blind, randomised, placebo-controlled trials, evaluating topotecan, PLDH, paclitaxel, trabectedin and gemcitabine, and economic evaluations were included. A network meta-analysis (NMA) was carried out. A de novo economic model was developed.

RESULTS

For most outcomes measuring clinical response, two networks were constructed: one evaluating platinum-based regimens and one evaluating non-platinum-based regimens. In people with platinum-sensitive disease, NMA found statistically significant benefits for PLDH plus platinum, and paclitaxel plus platinum for overall survival (OS) compared with platinum monotherapy. PLDH plus platinum significantly prolonged progression-free survival (PFS) compared with paclitaxel plus platinum. Of the non-platinum-based treatments, PLDH monotherapy and trabectedin plus PLDH were found to significantly increase OS, but not PFS, compared with topotecan monotherapy. In people with platinum-resistant/-refractory (PRR) disease, NMA found no statistically significant differences for any treatment compared with alternative regimens in OS and PFS. Economic modelling indicated that, for people with platinum-sensitive disease and receiving platinum-based therapy, the estimated probabilistic incremental cost-effectiveness ratio [ICER; incremental cost per additional quality-adjusted life-year (QALY)] for paclitaxel plus platinum compared with platinum was £24,539. Gemcitabine plus carboplatin was extendedly dominated, and PLDH plus platinum was strictly dominated. For people with platinum-sensitive disease and receiving non-platinum-based therapy, the probabilistic ICERs associated with PLDH compared with paclitaxel, and trabectedin plus PLDH compared with PLDH, were estimated to be £25,931 and £81,353, respectively. Topotecan was strictly dominated. For people with PRR disease, the probabilistic ICER associated with topotecan compared with PLDH was estimated to be £324,188. Paclitaxel was strictly dominated.

LIMITATIONS

As platinum- and non-platinum-based treatments were evaluated separately, the comparative clinical effectiveness and cost-effectiveness of these regimens is uncertain in patients with platinum-sensitive disease.

CONCLUSIONS

For platinum-sensitive disease, it was not possible to compare the clinical effectiveness and cost-effectiveness of platinum-based therapies with non-platinum-based therapies. For people with platinum-sensitive disease and treated with platinum-based therapies, paclitaxel plus platinum could be considered cost-effective compared with platinum at a threshold of £30,000 per additional QALY. For people with platinum-sensitive disease and treated with non-platinum-based therapies, it is unclear whether PLDH would be considered cost-effective compared with paclitaxel at a threshold of £30,000 per additional QALY; trabectedin plus PLDH is unlikely to be considered cost-effective compared with PLDH. For patients with PRR disease, it is unlikely that topotecan would be considered cost-effective compared with PLDH. Randomised controlled trials comparing platinum with non-platinum-based treatments might help to verify the comparative effectiveness of these regimens.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42013003555.

FUNDING

The National Institute for Health Research Health Technology Assessment programme.

Abstract

BACKGROUND

Ovarian cancer is the fifth most common cancer in the UK, and the fourth most common cause of cancer death. Of those people successfully treated with first-line chemotherapy, 55-75% will relapse within 2 years. At this time, it is uncertain which chemotherapy regimen is more clinically effective and cost-effective for the treatment of recurrent, advanced ovarian cancer.

OBJECTIVES

To determine the comparative clinical effectiveness and cost-effectiveness of topotecan (Hycamtin(®), GlaxoSmithKline), pegylated liposomal doxorubicin hydrochloride (PLDH; Caelyx(®), Schering-Plough), paclitaxel (Taxol(®), Bristol-Myers Squibb), trabectedin (Yondelis(®), PharmaMar) and gemcitabine (Gemzar(®), Eli Lilly and Company) for the treatment of advanced, recurrent ovarian cancer.

DATA SOURCES

Electronic databases (MEDLINE(®), EMBASE, Cochrane Central Register of Controlled Trials, Health Technology Assessment database, NHS Economic Evaluations Database) and trial registries were searched, and company submissions were reviewed. Databases were searched from inception to May 2013.

METHODS

A systematic review of the clinical and economic literature was carried out following standard methodological principles. Double-blind, randomised, placebo-controlled trials, evaluating topotecan, PLDH, paclitaxel, trabectedin and gemcitabine, and economic evaluations were included. A network meta-analysis (NMA) was carried out. A de novo economic model was developed.

RESULTS

For most outcomes measuring clinical response, two networks were constructed: one evaluating platinum-based regimens and one evaluating non-platinum-based regimens. In people with platinum-sensitive disease, NMA found statistically significant benefits for PLDH plus platinum, and paclitaxel plus platinum for overall survival (OS) compared with platinum monotherapy. PLDH plus platinum significantly prolonged progression-free survival (PFS) compared with paclitaxel plus platinum. Of the non-platinum-based treatments, PLDH monotherapy and trabectedin plus PLDH were found to significantly increase OS, but not PFS, compared with topotecan monotherapy. In people with platinum-resistant/-refractory (PRR) disease, NMA found no statistically significant differences for any treatment compared with alternative regimens in OS and PFS. Economic modelling indicated that, for people with platinum-sensitive disease and receiving platinum-based therapy, the estimated probabilistic incremental cost-effectiveness ratio [ICER; incremental cost per additional quality-adjusted life-year (QALY)] for paclitaxel plus platinum compared with platinum was £24,539. Gemcitabine plus carboplatin was extendedly dominated, and PLDH plus platinum was strictly dominated. For people with platinum-sensitive disease and receiving non-platinum-based therapy, the probabilistic ICERs associated with PLDH compared with paclitaxel, and trabectedin plus PLDH compared with PLDH, were estimated to be £25,931 and £81,353, respectively. Topotecan was strictly dominated. For people with PRR disease, the probabilistic ICER associated with topotecan compared with PLDH was estimated to be £324,188. Paclitaxel was strictly dominated.

LIMITATIONS

As platinum- and non-platinum-based treatments were evaluated separately, the comparative clinical effectiveness and cost-effectiveness of these regimens is uncertain in patients with platinum-sensitive disease.

CONCLUSIONS

For platinum-sensitive disease, it was not possible to compare the clinical effectiveness and cost-effectiveness of platinum-based therapies with non-platinum-based therapies. For people with platinum-sensitive disease and treated with platinum-based therapies, paclitaxel plus platinum could be considered cost-effective compared with platinum at a threshold of £30,000 per additional QALY. For people with platinum-sensitive disease and treated with non-platinum-based therapies, it is unclear whether PLDH would be considered cost-effective compared with paclitaxel at a threshold of £30,000 per additional QALY; trabectedin plus PLDH is unlikely to be considered cost-effective compared with PLDH. For patients with PRR disease, it is unlikely that topotecan would be considered cost-effective compared with PLDH. Randomised controlled trials comparing platinum with non-platinum-based treatments might help to verify the comparative effectiveness of these regimens.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42013003555.

FUNDING

The National Institute for Health Research Health Technology Assessment programme.

If you would like to receive a notification when this project publishes in the NIHR Journals Library, please submit your email address below.

 

Responses to this report

No responses have been published.

 

If you would like to submit a response to this publication, please do so using the form below:

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 2 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

By submitting your response, you are stating that you agree to the terms & conditions