Journals Library

An error occurred retrieving content to display, please try again.

Page not found (404)

Sorry - the page you requested could not be found.

Please choose a page from the navigation or try a website search above to find the information you need.

{{metadata.Title}}

{{metadata.Headline}}

Review found that the Canadian Computed Tomography Head Rule was the most widely validated strategy for managing minor head injury in adults, but decision rules for children needed further validation

{{author}}{{author}}{{($index < metadata.AuthorsAndEtalArray.length-1) ? ',' : '.'}}

A Pandor, S Goodacre *, S Harnan, M Holmes, A Pickering, P Fitzgerald, A Rees, M Stevenson

School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
* Corresponding author Email: s.goodacre@sheffield.ac.uk

{{metadata.Journal}} Volume: {{metadata.Volume}}, Issue: {{metadata.Issue}}, Published in {{metadata.PublicationDate | date:'MMMM yyyy'}}

https://doi.org/{{metadata.DOI}}

Citation: {{author}}{{ (($index < metadata.AuthorsArray.length-1) && ($index <=6)) ? ', ' : '' }}{{(metadata.AuthorsArray.length <= 6) ? '.' : '' }} {{(metadata.AuthorsArray.length > 6) ? 'et al.' : ''}} {{metadata.Title}}. {{metadata.JournalShortName}} {{metadata.PublicationDate | date:'yyyy'}};{{metadata.Volume}}({{metadata.Issue}})

Report Content

The full text of this issue is available as a PDF document from the Toolkit section on this page.

The full text of this issue is available as a PDF document from the Toolkit section on this page.

Abstract

BACKGROUND

Patients with minor head injury [Glasgow Coma Scale (GCS) score 13-15] have a small but important risk of intracranial injury (ICI) that requires early identification and neurosurgical treatment. Diagnostic assessment can use either a clinical decision rule or unstructured assessment of individual clinical features to identify those who are at risk of ICI and in need of computerised tomography (CT) scanning and/or hospital admission. Selective use of CT investigations helps minimise unnecessary radiation exposure and resource use, but can lead to missed opportunities to provide early treatment for ICI.

OBJECTIVES

To determine the diagnostic accuracy of decision rules, individual clinical characteristics, skull radiography and biomarkers, and the clinical effectiveness and cost-effectiveness of diagnostic management strategies for minor head injury (MHI).

DATA SOURCES

Several electronic databases [including MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, Cumulative Index to Nursing and Allied Health Literature (CINAHL), EMBASE and The Cochrane Library] were searched from inception to April 2009 (updated searches to March 2010 were conducted on the MEDLINE databases only). Searches were supplemented by hand-searching relevant articles (including citation searching) and contacting experts in the field. For each of the systematic reviews the following studies were included (1) cohort studies of patients with MHI in which a clinical decision rule or individual clinical characteristics (including biomarkers and skull radiography) were compared with a reference standard test for ICI or need for neurosurgical intervention and (2) controlled trials comparing alternative management strategies for MHI.

REVIEW METHODS

Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool (for the assessment of diagnostic accuracy) or criteria recommended by the Effective Practice and Organisation of Care Review Group (for the assessment of management practices). Where sufficient data existed, a meta-analysis was undertaken to generate pooled estimates of diagnostic parameters. A decision-analysis model was developed using Simul8 2008 Professional software (Simul8 Corporation, Boston, MA, USA) to estimate the costs and quality-adjusted life-years (QALYs) accrued by management strategies for MHI. The model took a lifetime horizon and NHS perspective. Estimates of the benefits of early treatment, harm of radiation exposure and long-term costs were obtained through literature reviews. Initial analysis was deterministic, but probabilistic sensitivity analysis was also performed. Secondary analyses were undertaken to explore the trade-off between sensitivity and specificity in diagnostic strategies and to determine the cost-effectiveness of scenarios involving hospital admission.

RESULTS

The literature searches identified 8003 citations. Of these, 93 full-text papers were included for the assessment of diagnostic accuracy and one for the assessment of management practices. The quality of studies and reporting was generally poor. The Canadian CT Head Rule (CCHR) was the most widely validated adult rule, with sensitivity of 99-100% and 80-100% for neurosurgical and any ICI, respectively (high- or medium-risk criteria), and specificity of 39-51%. Rules for children had high sensitivity and acceptable specificity in derivation cohorts, but limited validation. Depressed, basal or radiological skull fracture and post-traumatic seizure (PTS) [positive likelihood ratio (PLR) > 10]; focal neurological deficit, persistent vomiting, decrease in GCS and previous neurosurgery (PLR 5-10); and fall from a height, coagulopathy, chronic alcohol use, age > 60 years, pedestrian motor vehicle accident (MVA), any seizure, undefined vomiting, amnesia, GCS < 14 and GCS < 15 (PLR 2-5) increased the likelihood of ICI in adults. Depressed or basal skull fracture and focal neurological deficit (PLR > 10), coagulopathy, PTS and previous neurosurgery (PLR 5-10), visual symptoms, bicycle and pedestrian MVA, any seizure, loss of consciousness, vomiting, severe or persistent headache, amnesia, GCS < 14, GCS < 15, intoxication and radiological skull fracture (PLR 2-5) increased the likelihood of ICI in children. S100 calcium-binding protein B had pooled sensitivity of 96.8% [95% highest-density region (HDR) 93.8% to 98.6%] and specificity of 42.5% (95% HDR 31.0% to 54.2%). The only controlled trial showed that early CT and discharge is cheaper and at least as effective as hospital admission. Economic analysis showed that selective CT use dominated 'CT all' and 'discharge all' strategies. The optimal strategies were the CCHR (adults) and the CHALICE (Children's Head injury Algorithm for the prediction of Important Clinical Events) or NEXUS II (National Emergency X-Radiography Utilization Study II) rule (children). The sensitivity and specificity of the CCHR (99% and 47%, respectively) represented an appropriate trade-off of these parameters. Hospital admission dominated discharge home for patients with non-neurosurgical injury, but cost £39 M per QALY for clinically normal patients with a normal CT.

CONCLUSIONS

The CCHR is widely validated and cost-effective for adults. Decision rules for children appear cost-effective, but need further validation. Hospital admission is cost-effective for patients with abnormal, but not normal, CT. The main research priorities are to (1) validate decision rules for children; (2) determine the prognosis and treatment benefit for non-neurosurgical injuries; (3) evaluate the use of S100B alongside a validated decision rule; (4) evaluate the diagnosis and outcomes of anticoagulated patients with MHI; and (5) evaluate the implementation of guidelines, clinical decision rules and diagnostic strategies. Formal expected value of sample information analysis would be recommended to appraise the cost-effectiveness of future studies.

FUNDING

The National Institute for Health Research Health Technology Assessment programme.

Abstract

BACKGROUND

Patients with minor head injury [Glasgow Coma Scale (GCS) score 13-15] have a small but important risk of intracranial injury (ICI) that requires early identification and neurosurgical treatment. Diagnostic assessment can use either a clinical decision rule or unstructured assessment of individual clinical features to identify those who are at risk of ICI and in need of computerised tomography (CT) scanning and/or hospital admission. Selective use of CT investigations helps minimise unnecessary radiation exposure and resource use, but can lead to missed opportunities to provide early treatment for ICI.

OBJECTIVES

To determine the diagnostic accuracy of decision rules, individual clinical characteristics, skull radiography and biomarkers, and the clinical effectiveness and cost-effectiveness of diagnostic management strategies for minor head injury (MHI).

DATA SOURCES

Several electronic databases [including MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, Cumulative Index to Nursing and Allied Health Literature (CINAHL), EMBASE and The Cochrane Library] were searched from inception to April 2009 (updated searches to March 2010 were conducted on the MEDLINE databases only). Searches were supplemented by hand-searching relevant articles (including citation searching) and contacting experts in the field. For each of the systematic reviews the following studies were included (1) cohort studies of patients with MHI in which a clinical decision rule or individual clinical characteristics (including biomarkers and skull radiography) were compared with a reference standard test for ICI or need for neurosurgical intervention and (2) controlled trials comparing alternative management strategies for MHI.

REVIEW METHODS

Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool (for the assessment of diagnostic accuracy) or criteria recommended by the Effective Practice and Organisation of Care Review Group (for the assessment of management practices). Where sufficient data existed, a meta-analysis was undertaken to generate pooled estimates of diagnostic parameters. A decision-analysis model was developed using Simul8 2008 Professional software (Simul8 Corporation, Boston, MA, USA) to estimate the costs and quality-adjusted life-years (QALYs) accrued by management strategies for MHI. The model took a lifetime horizon and NHS perspective. Estimates of the benefits of early treatment, harm of radiation exposure and long-term costs were obtained through literature reviews. Initial analysis was deterministic, but probabilistic sensitivity analysis was also performed. Secondary analyses were undertaken to explore the trade-off between sensitivity and specificity in diagnostic strategies and to determine the cost-effectiveness of scenarios involving hospital admission.

RESULTS

The literature searches identified 8003 citations. Of these, 93 full-text papers were included for the assessment of diagnostic accuracy and one for the assessment of management practices. The quality of studies and reporting was generally poor. The Canadian CT Head Rule (CCHR) was the most widely validated adult rule, with sensitivity of 99-100% and 80-100% for neurosurgical and any ICI, respectively (high- or medium-risk criteria), and specificity of 39-51%. Rules for children had high sensitivity and acceptable specificity in derivation cohorts, but limited validation. Depressed, basal or radiological skull fracture and post-traumatic seizure (PTS) [positive likelihood ratio (PLR) > 10]; focal neurological deficit, persistent vomiting, decrease in GCS and previous neurosurgery (PLR 5-10); and fall from a height, coagulopathy, chronic alcohol use, age > 60 years, pedestrian motor vehicle accident (MVA), any seizure, undefined vomiting, amnesia, GCS < 14 and GCS < 15 (PLR 2-5) increased the likelihood of ICI in adults. Depressed or basal skull fracture and focal neurological deficit (PLR > 10), coagulopathy, PTS and previous neurosurgery (PLR 5-10), visual symptoms, bicycle and pedestrian MVA, any seizure, loss of consciousness, vomiting, severe or persistent headache, amnesia, GCS < 14, GCS < 15, intoxication and radiological skull fracture (PLR 2-5) increased the likelihood of ICI in children. S100 calcium-binding protein B had pooled sensitivity of 96.8% [95% highest-density region (HDR) 93.8% to 98.6%] and specificity of 42.5% (95% HDR 31.0% to 54.2%). The only controlled trial showed that early CT and discharge is cheaper and at least as effective as hospital admission. Economic analysis showed that selective CT use dominated 'CT all' and 'discharge all' strategies. The optimal strategies were the CCHR (adults) and the CHALICE (Children's Head injury Algorithm for the prediction of Important Clinical Events) or NEXUS II (National Emergency X-Radiography Utilization Study II) rule (children). The sensitivity and specificity of the CCHR (99% and 47%, respectively) represented an appropriate trade-off of these parameters. Hospital admission dominated discharge home for patients with non-neurosurgical injury, but cost £39 M per QALY for clinically normal patients with a normal CT.

CONCLUSIONS

The CCHR is widely validated and cost-effective for adults. Decision rules for children appear cost-effective, but need further validation. Hospital admission is cost-effective for patients with abnormal, but not normal, CT. The main research priorities are to (1) validate decision rules for children; (2) determine the prognosis and treatment benefit for non-neurosurgical injuries; (3) evaluate the use of S100B alongside a validated decision rule; (4) evaluate the diagnosis and outcomes of anticoagulated patients with MHI; and (5) evaluate the implementation of guidelines, clinical decision rules and diagnostic strategies. Formal expected value of sample information analysis would be recommended to appraise the cost-effectiveness of future studies.

FUNDING

The National Institute for Health Research Health Technology Assessment programme.

If you would like to receive a notification when this project publishes in the NIHR Journals Library, please submit your email address below.

 

Responses to this report

No responses have been published.

 

If you would like to submit a response to this publication, please do so using the form below:

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 2 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

By submitting your response, you are stating that you agree to the terms & conditions