Journals Library

An error has occurred in processing the XML document

An error occurred retrieving content to display, please try again.

Page not found (404)

Sorry - the page you requested could not be found.

Please choose a page from the navigation or try a website search above to find the information you need.

{{metadata.Title}}

{{metadata.Headline}}

Study found that non-invasive ventilatory support delivered by either continuous positive airway pressure or non-invasive positive pressure ventilation safely provides earlier improvement and resolution of breathlessness, respiratory distress and metabolic abnormality in patients with severe acute cardiogenic pulmonary oedema

{{author}}{{author}}{{($index < metadata.AuthorsAndEtalArray.length-1) ? ',' : '.'}}

An error has occurred in processing the XML document

An error has occurred in processing the XML document

{{metadata.Journal}} Volume: {{metadata.Volume}}, Issue:{{metadata.Issue}}, Published in {{metadata.PublicationDate | date:'MMMM yyyy'}}

https://doi.org/{{metadata.DOI}}

Citation: {{author}}{{ (($index < metadata.AuthorsArray.length-1) && ($index <=6)) ? ', ' : '' }}{{(metadata.AuthorsArray.length <= 6) ? '.' : '' }} {{(metadata.AuthorsArray.length > 6) ? 'et al.' : ''}} {{metadata.Title}}. {{metadata.JournalShortName}} {{metadata.PublicationDate | date:'yyyy'}};{{metadata.Volume}}({{metadata.Issue}})

You might also be interested in:
{{classification.Category.Concept}}

Report Content

The full text of this issue is available as a PDF document from the Toolkit section on this page.

The full text of this issue is available as a PDF document from the Toolkit section on this page.

Abstract

OBJECTIVES

To determine whether non-invasive ventilation reduces mortality and whether there are important differences in outcome by treatment modality.

DESIGN

Multicentre open prospective randomised controlled trial.

SETTING

Patients presenting with severe acute cardiogenic pulmonary oedema in 26 emergency departments in the UK.

PARTICIPANTS

Inclusion criteria were age > 16 years, clinical diagnosis of acute cardiogenic pulmonary oedema, pulmonary oedema on chest radiograph, respiratory rate > 20 breaths per minute, and arterial hydrogen ion concentration > 45 nmol/l (pH < 7.35).

INTERVENTIONS

Patients were randomised to standard oxygen therapy, continuous positive airway pressure (CPAP) (5-15 cmH2O) or non-invasive positive pressure ventilation (NIPPV) (inspiratory pressure 8-20 cmH2O, expiratory pressure 4-10 cmH2O) on a 1:1:1 basis for a minimum of 2 hours.

MAIN OUTCOME MEASURES

The primary end point for the comparison between NIPPV or CPAP and standard therapy was 7-day mortality. The composite primary end point for the comparison of NIPPV and CPAP was 7-day mortality and tracheal intubation rate. Secondary end points were breathlessness, physiological variables, intubation rate, length of hospital stay and critical care admission rate. Economic evaluation took the form of a cost-utility analysis, taken from an NHS (and personal social services) perspective.

RESULTS

In total, 1069 patients [mean age 78 (SD 10) years; 43% male] were recruited to standard therapy (n = 367), CPAP [n = 346; mean 10 (SD 4) cmH2O] or NIPPV [n = 356; mean 14 (SD 5)/7 (SD 2) cmH2O]. There was no difference in 7-day mortality for standard oxygen therapy (9.8%) and non-invasive ventilation (9.5%; p = 0.87). The combined end point of 7-day death and intubation rate was similar, irrespective of non-invasive ventilation modality (CPAP 11.7% versus NIPPV 11.1%; p = 0.81). Compared with standard therapy, non-invasive ventilation was associated with greater reductions (treatment difference, 95% confidence intervals) in breathlessness (visual analogue scale score 0.7, 0.2-1.3; p = 0.008) and heart rate (4/min, 1-6; p = 0.004) and improvement in acidosis (pH 0.03, 0.02-0.04; p < 0.001) and hypercapnia (0.7 kPa, 0.4-0.9; p < 0.001) at 1 hour. There were no treatment-related adverse events or differences in other secondary outcomes such as myocardial infarction rate, length of hospital stay, critical care admission rate and requirement for endotracheal intubation. Economic evaluation showed that mean costs and QALYs up to 6 months were 3023 pounds and 0.202 for standard therapy, 3224 pounds and 0.213 for CPAP, and 3208 pounds and 0.210 for NIPPV. Modelling of lifetime costs and QALYs produced values of 15,764 pounds and 1.597 for standard therapy, 17,525 pounds and 1.841 for CPAP, and 17,021 pounds and 1.707 for NIPPV. These results suggest that both CPAP and NIPPV accrue more QALYs but at higher cost than standard therapy. However, these estimates are subject to substantial uncertainty.

CONCLUSIONS

Non-invasive ventilatory support delivered by either CPAP or NIPPV safely provides earlier improvement and resolution of breathlessness, respiratory distress and metabolic abnormality. However, this does not translate into improved short- or longer-term survival. We recommend that CPAP or NIPPV should be considered as adjunctive therapy in patients with severe acute cardiogenic pulmonary oedema in the presence of severe respiratory distress or when there is a failure to improve with pharmacological therapy.

TRIAL REGISTRATION

Current Controlled Trials ISRCTN07448447.

Abstract

OBJECTIVES

To determine whether non-invasive ventilation reduces mortality and whether there are important differences in outcome by treatment modality.

DESIGN

Multicentre open prospective randomised controlled trial.

SETTING

Patients presenting with severe acute cardiogenic pulmonary oedema in 26 emergency departments in the UK.

PARTICIPANTS

Inclusion criteria were age > 16 years, clinical diagnosis of acute cardiogenic pulmonary oedema, pulmonary oedema on chest radiograph, respiratory rate > 20 breaths per minute, and arterial hydrogen ion concentration > 45 nmol/l (pH < 7.35).

INTERVENTIONS

Patients were randomised to standard oxygen therapy, continuous positive airway pressure (CPAP) (5-15 cmH2O) or non-invasive positive pressure ventilation (NIPPV) (inspiratory pressure 8-20 cmH2O, expiratory pressure 4-10 cmH2O) on a 1:1:1 basis for a minimum of 2 hours.

MAIN OUTCOME MEASURES

The primary end point for the comparison between NIPPV or CPAP and standard therapy was 7-day mortality. The composite primary end point for the comparison of NIPPV and CPAP was 7-day mortality and tracheal intubation rate. Secondary end points were breathlessness, physiological variables, intubation rate, length of hospital stay and critical care admission rate. Economic evaluation took the form of a cost-utility analysis, taken from an NHS (and personal social services) perspective.

RESULTS

In total, 1069 patients [mean age 78 (SD 10) years; 43% male] were recruited to standard therapy (n = 367), CPAP [n = 346; mean 10 (SD 4) cmH2O] or NIPPV [n = 356; mean 14 (SD 5)/7 (SD 2) cmH2O]. There was no difference in 7-day mortality for standard oxygen therapy (9.8%) and non-invasive ventilation (9.5%; p = 0.87). The combined end point of 7-day death and intubation rate was similar, irrespective of non-invasive ventilation modality (CPAP 11.7% versus NIPPV 11.1%; p = 0.81). Compared with standard therapy, non-invasive ventilation was associated with greater reductions (treatment difference, 95% confidence intervals) in breathlessness (visual analogue scale score 0.7, 0.2-1.3; p = 0.008) and heart rate (4/min, 1-6; p = 0.004) and improvement in acidosis (pH 0.03, 0.02-0.04; p < 0.001) and hypercapnia (0.7 kPa, 0.4-0.9; p < 0.001) at 1 hour. There were no treatment-related adverse events or differences in other secondary outcomes such as myocardial infarction rate, length of hospital stay, critical care admission rate and requirement for endotracheal intubation. Economic evaluation showed that mean costs and QALYs up to 6 months were 3023 pounds and 0.202 for standard therapy, 3224 pounds and 0.213 for CPAP, and 3208 pounds and 0.210 for NIPPV. Modelling of lifetime costs and QALYs produced values of 15,764 pounds and 1.597 for standard therapy, 17,525 pounds and 1.841 for CPAP, and 17,021 pounds and 1.707 for NIPPV. These results suggest that both CPAP and NIPPV accrue more QALYs but at higher cost than standard therapy. However, these estimates are subject to substantial uncertainty.

CONCLUSIONS

Non-invasive ventilatory support delivered by either CPAP or NIPPV safely provides earlier improvement and resolution of breathlessness, respiratory distress and metabolic abnormality. However, this does not translate into improved short- or longer-term survival. We recommend that CPAP or NIPPV should be considered as adjunctive therapy in patients with severe acute cardiogenic pulmonary oedema in the presence of severe respiratory distress or when there is a failure to improve with pharmacological therapy.

TRIAL REGISTRATION

Current Controlled Trials ISRCTN07448447.

If you would like to receive a notification when this project publishes in the NIHR Journals Library, please submit your email address below.

 

Responses to this report

 

No responses have been published.

If you would like to submit a response to this publication, please do so using the form below.

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 2 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

By submitting your response, you are stating that you agree to the terms & conditions