Journals Library

An error has occurred in processing the XML document

An error occurred retrieving content to display, please try again.

Page not found (404)

Sorry - the page you requested could not be found.

Please choose a page from the navigation or try a website search above to find the information you need.

{{metadata.Title}}

{{metadata.Headline}}

Study finds that contamination in controlled trials of educational interventions in health is a potential problem that needs to be considered in the design and analysis stages as well as recorded and reported during the trial itself.

{{author}}{{author}}{{($index < metadata.AuthorsAndEtalArray.length-1) ? ',' : '.'}}

An error has occurred in processing the XML document

An error has occurred in processing the XML document

{{metadata.Journal}} Volume: {{metadata.Volume}}, Issue: {{metadata.Issue}}, Published in {{metadata.PublicationDate | date:'MMMM yyyy'}}

https://doi.org/{{metadata.DOI}}

Citation: {{author}}{{ (($index < metadata.AuthorsArray.length-1) && ($index <=6)) ? ', ' : '' }}{{(metadata.AuthorsArray.length <= 6) ? '.' : '' }} {{(metadata.AuthorsArray.length > 6) ? 'et al.' : ''}} {{metadata.Title}}. {{metadata.JournalShortName}} {{metadata.PublicationDate | date:'yyyy'}};{{metadata.Volume}}({{metadata.Issue}})

You might also be interested in:
{{classification.Category.Concept}}

Report Content

The full text of this issue is available as a PDF document from the Toolkit section on this page.

The full text of this issue is available as a PDF document from the Toolkit section on this page.

Abstract

OBJECTIVES

To consider the effects of contamination on the magnitude and statistical significance (or precision) of the estimated effect of an educational intervention, to investigate the mechanisms of contamination, and to consider how contamination can be avoided.

DATA SOURCES

Major electronic databases were searched up to May 2005.

METHODS

An exploratory literature search was conducted. The results of trials included in previous relevant systematic reviews were then analysed to see whether studies that avoided contamination resulted in larger effect estimates than those that did not. Experts' opinions were elicited about factors more or less likely to lead to contamination. We simulated contamination processes to compare contamination biases between cluster and individually randomised trials. Statistical adjustment was made for contamination using Complier Average Causal Effect analytic methods, using published and simulated data. The bias and power of cluster and individually randomised trials were compared, as were Complier Average Causal Effect, intention-to-treat and per protocol methods of analysis.

RESULTS

Few relevant studies quantified contamination. Experts largely agreed on where contamination was more or less likely. Simulation of contamination processes showed that, with various combinations of timing, intensity and baseline dependence of contamination, cluster randomised trials might produce biases greater than or similar to those of individually randomised trials. Complier Average Causal Effect analyses produced results that were less biased than intention-to-treat or per protocol analyses. They also showed that individually randomised trials would in most situations be more powerful than cluster randomised trials despite contamination.

CONCLUSIONS

The probability, nature and process of contamination should be considered when designing and analysing controlled trials of educational interventions in health. Cluster randomisation may or may not be appropriate and should not be uncritically assumed always to be a solution. Complier Average Causal Effect models are an appropriate way to adjust for contamination if it can be measured. When conducting such trials in future, it is a priority to report the extent, nature and effects of contamination.

Abstract

OBJECTIVES

To consider the effects of contamination on the magnitude and statistical significance (or precision) of the estimated effect of an educational intervention, to investigate the mechanisms of contamination, and to consider how contamination can be avoided.

DATA SOURCES

Major electronic databases were searched up to May 2005.

METHODS

An exploratory literature search was conducted. The results of trials included in previous relevant systematic reviews were then analysed to see whether studies that avoided contamination resulted in larger effect estimates than those that did not. Experts' opinions were elicited about factors more or less likely to lead to contamination. We simulated contamination processes to compare contamination biases between cluster and individually randomised trials. Statistical adjustment was made for contamination using Complier Average Causal Effect analytic methods, using published and simulated data. The bias and power of cluster and individually randomised trials were compared, as were Complier Average Causal Effect, intention-to-treat and per protocol methods of analysis.

RESULTS

Few relevant studies quantified contamination. Experts largely agreed on where contamination was more or less likely. Simulation of contamination processes showed that, with various combinations of timing, intensity and baseline dependence of contamination, cluster randomised trials might produce biases greater than or similar to those of individually randomised trials. Complier Average Causal Effect analyses produced results that were less biased than intention-to-treat or per protocol analyses. They also showed that individually randomised trials would in most situations be more powerful than cluster randomised trials despite contamination.

CONCLUSIONS

The probability, nature and process of contamination should be considered when designing and analysing controlled trials of educational interventions in health. Cluster randomisation may or may not be appropriate and should not be uncritically assumed always to be a solution. Complier Average Causal Effect models are an appropriate way to adjust for contamination if it can be measured. When conducting such trials in future, it is a priority to report the extent, nature and effects of contamination.

If you would like to receive a notification when this project publishes in the NIHR Journals Library, please submit your email address below.

 

Responses to this report

 

No responses have been published.

If you would like to submit a response to this publication, please do so using the form below.

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 2 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

By submitting your response, you are stating that you agree to the terms & conditions