Bayesian methods in health technology assessment: a review

Authors: Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR

Journal: Health Technology Assessment Volume: 4 Issue: 38

Publication date: December 2000



Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR.Bayesian methods in health technology assessment: a review. Health Technol Assess 2000;4(38)

Download: Citation (for this publication as a .ris file) (4.3 KB)

Journal issues* can be purchased by completing the form.

The cost of reports varies according to number of pages and postage address. The minimum cost for a copy sent to a UK address is £30.00. We will contact you on receipt of your completed form to advise you of actual cost. If you have any queries, please contact

*We regret that unfortunately we are unable to supply bound print copies of Health Technology Assessment published before issue 12:31. However, PDFs are available to print from the "Downloads" tab of the issue page.


No responses have been published. If you would like to submit a response to this publication, please do so using the form below.

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 2 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

Post your response



Middle Initial

Occupation / Job title

Affiliation / Employer



Other authors

For example, if you are responding as a team or group. Please ensure you include full names and separate these using commas

Statement of competing interests

We believe that readers should be aware of any competing interests (conflicts of interest).

The International Committee of Medical Journal Editors (ICMJE) define competing interests as including: financial relationships with industry (for example through employment, consultancies, stock, ownership, honoraria, and expert testimony), either directly or through immediate family; personal relationships; academic competition; and intellectual passion.

If yes, provide details below:

Enter response title

Enter response message


Security key

Regenerate security key

By submitting your response, you are stating that you agree to the terms & conditions

The full text of this issue is available as a PDF document from the Downloads section on this page.



Bayesian methods may be defined as the explicit quantitative use of external evidence in the design, monitoring, analysis, interpretation and reporting of a health technology assessment. In outline, the methods involve formal combination through the use of Bayes's theorem of: 1. a prior distribution or belief about the value of a quantity of interest (for example, a treatment effect) based on evidence not derived from the study under analysis, with 2. a summary of the information concerning the same quantity available from the data collected in the study (known as the likelihood), to yield 3. an updated or posterior distribution of the quantity of interest. These methods thus directly address the question of how new evidence should change what we currently believe. They extend naturally into making predictions, synthesising evidence from multiple sources, and designing studies: in addition, if we are willing to quantify the value of different consequences as a 'loss function', Bayesian methods extend into a full decision-theoretic approach to study design, monitoring and eventual policy decision-making. Nonetheless, Bayesian methods are a controversial topic in that they may involve the explicit use of subjective judgements in what is conventionally supposed to be a rigorous scientific exercise.


This report is intended to provide: 1. a brief review of the essential ideas of Bayesian analysis 2. a full structured review of applications of Bayesian methods to randomised controlled trials, observational studies, and the synthesis of evidence, in a form which should be reasonably straightforward to update 3. a critical commentary on similarities and differences between Bayesian and conventional approaches 4. criteria for assessing the reporting of a Bayesian analysis 5. a comprehensive list of published 'three-star' examples, in which a proper prior distribution has been used for the quantity of primary interest 6. tutorial case studies of a variety of types 7. recommendations on how Bayesian methods and approaches may be assimilated into health technology assessments in a variety of contexts and by a variety of participants in the research process.


The BIDS ISI database was searched using the terms 'Bayes' or 'Bayesian'. This yielded almost 4000 papers published in the period 1990-98. All resultant abstracts were reviewed for relevance to health technology assessment; about 250 were so identified, and used as the basis for forward and backward searches. In addition EMBASE and MEDLINE databases were searched, along with websites of prominent authors, and available personal collections of references, finally yielding nearly 500 relevant references. A comprehensive review of all references describing use of 'proper' Bayesian methods in health technology assessment (those which update an informative prior distribution through the use of Bayes's theorem) has been attempted, and around 30 such papers are reported in structured form. There has been very limited use of proper Bayesian methods in practice, and relevant studies appear to be relatively easily identified.


Bayesian methods in the health technology assessment context 1. Different contexts may demand different statistical approaches. Prior opinions are most valuable when the assessment forms part of a series of similar studies. A decision-theoretic approach may be appropriate where the consequences of a study are reasonably predictable. 2. The prior distribution is important and not unique, and so a range of options should be examined in a sensitivity analysis. Bayesian methods are best seen as a transformation from initial to final opinion, rather than providing a single 'correct' inference. 3. The use of a prior is based on judgement, and hence a degree of subjectivity cannot be avoided. However, subjective priors tend to show predictable biases, and archetypal priors may be useful for identifying a reasonable range of prior opinion.

Share this page

Email this page
Publication updates

If you would like to receive information on publications and the latest news, click below to sign up.