Recombinant human growth hormone for the treatment of growth disorders in children: a systematic review and economic evaluation

Authors: Takeda A, Cooper K, Bird A, Baxter L, Frampton GK, Gospodarevskaya E, Welch K, Bryant J

Journal: Health Technology Assessment Volume: 14 Issue: 42

Publication date: September 2010

DOI: 10.3310/hta14420

Citation:

Takeda A, Cooper K, Bird A, Baxter L, Frampton GK, Gospodarevskaya E, et al.Recombinant human growth hormone for the treatment of growth disorders in children: a systematic review and economic evaluation. Health Technol Assess 2010;14(42)


Download: Citation (for this publication as a .ris file) (4.3 KB)


Journal issues* can be purchased by completing the form.


The cost of reports varies according to number of pages and postage address. The minimum cost for a copy sent to a UK address is £30.00. We will contact you on receipt of your completed form to advise you of actual cost. If you have any queries, please contact nihredit@southampton.ac.uk.


*We regret that unfortunately we are unable to supply bound print copies of Health Technology Assessment published before issue 12:31. However, PDFs are available to print from the "Downloads" tab of the issue page.

Responses

No responses have been published. If you would like to submit a response to this publication, please do so using the form below.

Comments submitted to the NIHR Journals Library are electronic letters to the editor. They enable our readers to debate issues raised in research reports published in the Journals Library. We aim to post within 2 working days all responses that contribute substantially to the topic investigated, as determined by the Editors.

Your name and affiliations will be published with your comment.

Once published, you will not have the right to remove or edit your response. The Editors may add, remove, or edit comments at their absolute discretion.

Post your response

Surname

Forename

Middle Initial

Occupation / Job title

Affiliation / Employer

Email

Address

Other authors

For example, if you are responding as a team or group. Please ensure you include full names and separate these using commas

Statement of competing interests

We believe that readers should be aware of any competing interests (conflicts of interest).

The International Committee of Medical Journal Editors (ICMJE) define competing interests as including: financial relationships with industry (for example through employment, consultancies, stock, ownership, honoraria, and expert testimony), either directly or through immediate family; personal relationships; academic competition; and intellectual passion.

If yes, provide details below:

Enter response title

Enter response message

Enter CAPTCHA

Security key

Regenerate security key

By submitting your response, you are stating that you agree to the terms & conditions

The full text of this issue is available as a PDF document from the Downloads section on this page.

Abstract

Background

Recombinant human growth hormone (rhGH) is licensed for short stature associated with growth hormone deficiency (GHD), Turner syndrome (TS), Prader-Willi syndrome (PWS), chronic renal insufficiency (CRI), short stature homeobox-containing gene deficiency (SHOX-D) and being born small for gestational age (SGA).

Objectives

To assess the clinical effectiveness and cost-effectiveness of rhGH compared with treatment strategies without rhGH for children with GHD, TS, PWS, CRI, SHOX-D and those born SGA.

Data sources

The systematic review used a priori methods. Key databases were searched (e.g. MEDLINE, EMBASE, NHS Economic Evaluation Database and eight others) for relevant studies from their inception to June 2009. A decision-analytical model was developed to determine cost-effectiveness in the UK.

Study selection

Two reviewers assessed titles and abstracts of studies identified by the search strategy, obtained the full text of relevant papers, and screened them against inclusion criteria. STUDY APPRAISAL: Data from included studies were extracted by one reviewer and checked by a second. Quality of included studies was assessed using standard criteria, applied by one reviewer and checked by a second. Clinical effectiveness studies were synthesised through a narrative review.

Results

Twenty-eight randomised controlled trials (RCTs) in 34 publications were included in the systematic review. GHD: Children in the rhGH group grew 2.7 cm/year faster than untreated children and had a statistically significantly higher height standard deviation score (HtSDS) after 1 year: -2.3 ± 0.45 versus -2.8 ± 0.45. TS: In one study, treated girls grew 9.3 cm more than untreated girls. In a study of younger children, the difference was 7.6 cm after 2 years. HtSDS values were statistically significantly higher in treated girls. PWS: Infants receiving rhGH for 1 year grew significantly taller (6.2 cm more) than those untreated. Two studies reported a statistically significant difference in HtSDS in favour of rhGH. CRI: rhGH-treated children in a 1-year study grew an average of 3.6 cm more than untreated children. HtSDS was statistically significantly higher in treated children in two studies. SGA: Criteria were amended to include children of 3+ years with no catch-up growth, with no reference to mid-parental height. Only one of the RCTs used the licensed dose; the others used higher doses. Adult height (AH) was approximately 4 cm higher in rhGH-treated patients in the one study to report this outcome, and AH-gain SDS was also statistically significantly higher in this group. Mean HtSDS was higher in treated than untreated patients in four other studies (significant in two). SHOX-D: After 2 years' treatment, children were approximately 6 cm taller than the control group and HtSDS was statistically significantly higher in treated children. The incremental cost per quality adjusted life-year (QALY) estimates of rhGH compared with no treatment were: 23,196 pounds for GHD, 39,460 pounds for TS, 135,311 pounds for PWS, 39,273 pounds for CRI, 33,079 pounds for SGA and 40,531 pounds for SHOX-D. The probability of treatment of each of the conditions being cost-effective at 30,000 pounds was: 95% for GHD, 19% for TS, 1% for PWS, 16% for CRI, 38% for SGA and 15% for SHOX-D.

Limitations

Generally poorly reported studies, some of short duration.

Conclusions

Statistically significantly larger HtSDS values were reported for rhGH-treated children with GHD, TS, PWS, CRI, SGA and SHOX-D. rhGH-treated children with PWS also showed statistically significant improvements in body composition measures. Only treatment of GHD would be considered cost-effective at a willingness-to-pay threshold of 20,000 to 30,000 pounds per QALY gained. This analysis suggests future research should include studies of longer than 2 years reporting near-final height or final adult height.

Publication updates

If you would like to receive information on publications and the latest news, click below to sign up.